Author: GETAWAYTHEBERKSHIRES

Home / Author: GETAWAYTHEBERKSHIRES

You Can Power a Calculator With Some LEDs

March 20, 2019 | Story | No Comments

Suppose you are getting ready to take a physics test. Everything is set—but wait! Your calculator battery died. What do you do? If you're extra crafty, you could grab an LED (light-emitting diode) and use it to get your calculator to function again. I know this seems crazy, but it's true. In fact, I did indeed run a calculator using some LEDs, which I will show you below.

Of course, to really understand how this works we need to look at what an LED actually is. I'm sure you have a few in the smartphone in your pocket. Many video displays use LEDs. It's very possible you've got one screwed into your ceiling light. They are everywhere.

Let's start off with just a diode. A diode is a device that is made from two types of semiconductors that are connected together. In one of the semiconductors, there are extra electrons (negative charges) that can move around to make the material a conductor. We call this an n-type semiconductor (the n stands for negative). The other type of material is called a p-type semiconductor. I bet you can guess what the p stands for—yup, positive charges. In the p-type there are actually atoms with missing electrons. These are called positive holes because an electron should be there. But these holes essentially behave like a positive charge.

When you put a p-type together with an n-type, you get a diode. If a current of negative electrons (which is the way most electrical currents work) enters the n-type side of the diode, everything works fine. The negative electrons can move through the n-type part of the diode with no problems. When these charges get to the p-type side, they combine with a positive hole (they fill in the holes). This makes it look as if a positive hole is moving in the opposite direction as the negative charge, such that there is a constant current across the diode.

If you switch the direction of the electric current, something different happens. To do that, you have to change the direction of the electric field inside the diode. This field then pushes the negative charges in the n-type and the positive holes in the p-type farther apart. Now it is much harder for the n's and p's to combine, so you essentially get no current.

That's the essence of a diode. Current can go one way through it, but not the other way. But wait! What about the light part? It turns out that a negative charge in the n-type side has a greater energy than the positive holes in the p-type side. So when a negative charge combines with a hole, there is a decrease in energy for the charge. Since energy has to be conserved, that energy has to go somewhere. It does. It makes light.

It's actually even crazier that that. It turns out that the frequency of the light produced is proportional to the change in energy. Yes, this is from quantum mechanics, but it is still real. Here is that relationship:

In this expression, ΔE is the change in energy of the electron and f is the frequency of light. The h is Planck's constant—it's kind of a big deal in quantum mechanics. But that is your LED, the light-emitting diode. I use them. You use them. Everyone uses them. They are great for lights because they mostly just create light and don't get very hot like incandescent or fluorescent bulbs.

Now let's get super crazy. What if you take an LED and you don't connect it to a battery? Instead you connect the LED to a voltmeter and measure the electric potential across the leads of the LED? Check this out.

Notice that by connecting the LED to the voltmeter, you get a voltage right away. This LED comes from an overhead light. When I cover up the LED, the voltage drops. Shining a bright light increases the voltage quite a bit. But why? Essentially, the diode is acting like a solar panel. OK, it IS a solar panel. The light gives energy to the electrons in the n-type material so that it has enough energy to move to the p-type side. This movement of charges builds up a potential difference (it's essentially acting like a capacitor here) so that you get voltage.

In case you can't tell, I think this is awesome. The LED is a two-way device. Run a current through and you get light. Shine light on it and you can get an electric current (if you connect it to something). OK. Game on. Can I use some LEDs to power something? In fact, YES. Check this out. Here are a bunch of LEDs connected in parallel such that the current from each LED adds to the total current. This LED bank is connected to a solar power calculator with the solar cell removed.

It works. OK, I had plans for something bigger. I wanted to have this run some tiny electric motor, but I couldn't get it to work. The calculator is pretty low power so it's perfect for this job.

But wait. If an LED can be both a light and a solar panel, can a solar panel also be a light? Apparently, yes. I didn't get this to work, but I've been told that if you connect a solar panel to a power supply, it will glow. Oh, you can't see it—it glows in the near infrared (like your TV remote). This means you will need a camera without an infrared filter to see it. I'm going to keep trying with this.

Let me tell you my real plan (since it didn't work). I was going to connect a motor to an LED and shine a light on the LED to run the motor. Then I was going to turn the motor really fast so that it acts like a generator and lights up the LED. That would be pretty cool.

Yes, an electric motor and an electric generator are the same thing. If you run current through it, it spins. If you spin it, you can get a current. Boom. Double duty. There are other devices that go both ways. What about the speaker? If you connect a speaker to the audio input on your computer, it acts as a microphone. Also, there is the TEG (thermoelectric generator). This is a device that is essentially just two different metals connected together. If you heat up one of the metals you can create an electric current. This sort of device is used with spacecraft (and a radioactive source for heat) to provide deep-space power. However, if you take this same device and run current through it, one side gets hot and one side gets cold. It's an electric cooler with zero moving parts.

So, now I'm adding the LED to this list of dual-purpose devices. Now I just need to figure out how to build an LED solar panel from scratch. That will be fun.

Cannabis strain names can get a bit … quirky (Lamb’s Bread, anyone?). But without them, patients that rely on marijuana to treat ailments like pain would be lost. If you want to treat seizures, you might want ACDC—a strain that expresses almost zero THC and very high CBD, a non-psychoactive cannabinoid—and stay away from the potentially panic-inducing Ghost OG, which verges on 25 percent THC.

Unfortunately, there isn’t an official federal database with information about cannabis strains, for obvious reasons. After all, this hasn’t been a regulated industry—you’re not allowed to call a Gala apple a Red Delicious, but no one is stopping you from calling your crop ACDC when it is in fact Ghost OG. It’s a big problem examined in a new study, posted to the preprint site BioRxiv, from the University of Northern Colorado. Researchers there bought samples of 30 separate cannabis strains, several for each, from dispensaries and compared them genetically.

Almost every strain, they found, had at least one sample that was a genetic mismatch (aka an imposter). And while strains did fall generally into one of two genetic groups, they didn’t fall neatly into the well-popularized dichotomy of indica and sativa.

The researchers looked at commonly used genetic markers called microsatellites, which have a high rate of mutation. Those mutations make it easier for scientists to identify differences between individuals. The researchers got their hands on as many as nine and as few as two samples of each strain, and compared them genetically in this way.

Cannabis strains are genetically unique because for decades, growers—particularly in Northern California’s famous Emerald Triangle, which provides perhaps three quarters of the marijuana in the US—have developed varieties of the cannabis plant by selecting for desirable traits. If you’ve got an individual plant that produces more THC, or grows faster, or produces bigger buds, you can take a cutting of that individual and grow a new plant from it. That’d make it a clone, genetically identical to its mother.

That results in unique strains that the researchers could sample genetically. “Out of the 30 strains, there were only four that were genetically consistent,” says geneticist Anna Schwabe, lead author on the paper. Something was awry. It could be that the grower sincerely believed they were growing Durban Poison, but in fact had a slightly different strain—or that somewhere in the process the product was mislabeled.

“It's not necessarily that somebody is doing anything malicious,” Schwabe says. Growers typically identifying their strains by smell, or color of their buds. “But because there are so many strains, it starts to get really hard to correctly identify plants based on their morphological characteristics.”

Then the answer is cloning, right? Get what you know is Purple Kush and just take cuttings of your mother plant to clone it. Not so fast. Sure, you’d get the right genetics, but genes aren’t everything. Even if you know you have Purple Kush, it can express different traits depending on environmental factors like light. “When you hear these cultivators like, ‘Oh I've had the same mother plant for 10 years,’ well, you definitely weren't producing the same clones all the time,” says Jeff Raber, CEO of the Werc Shop, a lab that tests cannabis, “because it's a different mother the second time you go back because you stressed the daylights out of her taking the first round of clones.”

Really, this variability isn’t unique to cannabis. Depending on where and how it’s grown, a particular variety of apple will vary as well. We still call a Red Delicious apple a Red Delicious, even if it isn’t as red or delicious as we expect.

So this is not a call to abolish cannabis strain naming conventions. “We need names,” says Jonathan Page, CEO of Anandia Labs, who coauthored a previous study showing genetic inconsistencies in cannabis strains. “In every other thing we consume—whether it's wine and merlot, Red Delicious apples, or cherry tomatoes—we name things.”

This new study also found problems with the famous indica-sativa cannabis divide—indica strains are supposedly more for sleepy times while sativa is supposedly more uplifting. You’d expect, then, for strains to map neatly to one of the two groups. While the study did find two genetic groups, they didn’t correspond well to known indica or sativa strains. For example, the researchers found that Grape Ape, an indica strain, didn’t assign particularly well to either of these novel genetic groups. “There's not very much evidence to support the widespread use of indica, sativa, and hybrid in classifying cannabis,” says Page. “However, they did find in this paper a suggestion of certain genotypes to which strains can be more closely related.”

“The other issue to keep in mind is that these things have been crossed by humans for a long time,” says plant evolutionary biologist Mitchell McGlaughlin, coauthor on the new paper. One theory holds that sativa and indica are separate species that were once geographically isolated. “That very well could be true, but then when you have hundreds if not thousands of years of humans then modifying that plant and making crosses—and in the wild this would be a wind-pollinated plant with pollen traveling reasonable distances—you then end up with issues where that historic signal has been lost.”

There are some caveats to consider with this new study, though. Again, the cannabis sample sizes here were small—as few as two for some strains. Because it’s preprint, it hasn’t been peer reviewed, the gold standard in scientific publishing. And microsatellites aren’t the only way to go about genetically testing cannabis—Page’s study, for instance, looked more broadly at the genomes, while microsatellites are a more targeted approach on those mutation-prone regions.

“They might be right, but far too many people in this field are using shady sub-par genomic methods to make claims that they are the arbiter of cannabis truth without subjecting their methods to peer review before doing so,” says Kevin McKernan, chief science officer of cannabis lab Medicinal Genomics.

These are very early days for cannabis research. But this study also shows how research like this is finally getting easier. Historically, the University of Mississippi has been the sole provider of research cannabis, and the quality ain’t super. But because marijuana is legal in Colorado, these researchers could procure their own samples of unique strains. Better access means better research—and a better understanding of the genetics that code for what is still one of the most mysterious plants on Earth.

Friday morning began with delays at New York’s LaGuardia Airport. That’s not unusual—New York’s airports are famously balky. But this time, the cause wasn't something prosaic, like a blizzard. It was staffing. Because of the federal government shutdown, the airport didn’t have enough Transportation Security Administration agents and air traffic controllers; things slowed to a ground stop.

Then it started to spread—Newark, Philadelphia, even the key hub of Atlanta all began to wind down. And that’s terrifying. Airports are nodes on a global network, and the science that guides how that network behaves means that if one node has a problem, that problem will spread. The international air travel network exists on something of a knife-edge. It doesn’t take much to knock it out of optimal flow.

Basically, the delay problem is one of "connected resources"; planes land and have to get turned around to perform other flights, and some of the passengers on them are getting onto other flights, too. If you’ve ever flown, you know all that, but what it means in practice is that small mistakes or delays at one airport get magnified as they move down the line, propagating and sometimes intensifying. “The systems operating these queues are very close to capacity,” says Hamsa Balakrishnan, an aerospace engineer at MIT who studies the air transport network. “Both LaGuardia and Newark had wind-related delays today. With full staffing you might have been able to manage, but with a decrease in staffing as well you have delays, which then end up spreading to other airports as well, because of connectivity.”

Typically you might expect that the biggest airports in the world—the ones with the most flights in and out, say, or that move the most people—would have the biggest effect on overall movement across the network. But in fact, an airport’s “delay propagation multiplier” varies depending on all kinds of things, from how an airport is scheduled to its overall capacity, and even the weather. By one calculation, a minute of delay causes an average of 30 seconds of slowdown elsewhere in the network. But some airports are more resilient than others. The time it takes to get from one to the other has an effect. It’s so complicated that it daunts even the most intrepid network modelers.

Airlines try to account for all this by building slack into the schedule. They calculate the amount of time a given flight should take—the “scheduled block time”—and the amount of time the plane should have to spend on the ground, the “scheduled turnaround time.” But then they have a choice. “They insert buffer time in their schedules and ground operations,” says Bo Zou, a transportation engineer at the University of Illinois. “They still encounter delays, and a newly formed delay for one flight will propagate to the second and third flights. Part of it will be absorbed by the buffer, but not all of it.” Build too small a buffer, and the delays propagate further. Build too large a buffer and you’re not using your fleet efficiently, and losing money. “One side is efficiency, the other is robustness,” Zou says.

And it changes all the time, depending on changing conditions—some are predictable, like winter storms, and some are not, like government shutdowns and informal sick-outs. That’s called a “dynamical complex network.” It has to adapt, constantly.

Because if it doesn’t? According to one study, flight delays cost the US economy over $30 billion a year. It’s not just lost time or flight expenses; it’s whatever the people on those flights were planning on doing when they arrived. “A prolonged shutdown, or even slow down, would likely affect all kinds of unforeseen things,” says Luís Bettencourt, a network scientist at the University of Chicago. “The reliability of time­-sensitive logistics will degrade, and the hub character of some of these cities will have to be bypassed, at least temporarily. A prolonged slow down would be most disastrous to large cities, their influence, and their economies.”

Having shut down the shutdown, the government can now get its TSA agents and air traffic controllers back on station. That’ll build some resilience back into the airports just in time for a big-ass snowstorm due to hit the midwest next week. But the overall health of the air travel network will still be precarious.

That’s why researchers are working on accumulating more and more data on how it all works (or doesn’t). If humans can’t schedule all these flights in an efficient and robust way, maybe an algorithm can. Balakrishnan has even cofounded a startup that’s trying to make it happen. “There are so many moving pieces that it’s hard for a human being to come up with all possible solutions,” she says. “But that’s something we know how to get computers to do.” If you enjoy flying on an intractable and incomprehensible network now, wait until it’s run by an intractable, incomprehensible robot.